Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chinese Science Bulletin-Chinese ; 67(16):1783-1795, 2022.
Article in English | Web of Science | ID: covidwho-2307753

ABSTRACT

In response to the construction process of Healthy China. it is rather important to create a safe, healthy and energy-efficient indoor environment for public buildings. The public building space is often densely populated, with a large flow of people and many types of air pollution, which presents non-uniform dynamic distribution characteristics. This brings great challenges to the control of indoor air safety, especially during the pandemic period of COVID-19. Excessive ventilation may not only cause large energy waste. but also lead to cross-contamination and even a cluster of infection. In this paper, an operation and maintenance (O&M) control system for indoor air safety is developed based on the core concepts and basic methods of human ergonomics. In this system, one of the important human environmental variables is focused for control, i.e.. indoor air pollution level. Especially after the outbreak of COVID-19. droplets and droplet nuclei from respiration are the most significant air pollution categories required for mitigation. Towards the efficient control of air pollution in large public buildings. it should further take into account the interaction of human, equipment and machines (i.e., ventilation_ air purification and disinfection and intelligent control system) and building environment. Firstly, on the basis of the online monitoring of indoor air pollution concentration and personnel flow, the non-uniform dynamic distribution of indoor pollutants and personnel can be obtained by using the non-uniform and low-dimensional rapid prediction models and computer vision processing. Then, the optimal setting results of ventilation parameters (e.g., ventilation modes, supply air rate. etc.) can be outputted by the environmental control decision system. Finally, based on a combination of monitoring sensors, controllers and actuator hardware equipment (at the location of fans or dampers), the intelligent regulation and control of ventilation system can be realized, aimed at minimizing energy consumption and reducing pollutant concentration and exposure level. Meanwhile, the air purification and disinfection system (especially for the disinfection of virus particles) are operated under the condition of the ventilated environment, which can serve as a powerful auxiliary to the maintenance of indoor air safety. The workflow and effect of the O&M control system are demonstrated by an engineering application case of the front hall in the International Convention and Exhibition Center. The results indicate that the non-uniform and low-dimensional rapid prediction model for pollutant concentration is effective for the ventilation control with the average prediction difference of 11.9%. The implementation of the intelligent ventilation system can reduce the risk of human infection to less than 4%. and its energy-saving ratio for the ventilation can be as high as about 45%. Through optimizing the layout strategies of disinfection devices based on the intelligent ventilation control, the space accessibility of negative oxygen ions can be well accepted, to further increase the removal efficiency of air pollution. The calculated value of space disinfection rate is more than 99%, which can further reduce the risk of infection by 1-2 orders of magnitude. This study can provide an important reference for the promotion and upgrading of O&M control system for indoor air safety.

2.
Indoor and Built Environment ; 32(2):323-342, 2023.
Article in English | Scopus | ID: covidwho-2246175

ABSTRACT

Due to the large height and span of indoor spaces, efficient indoor ventilation performance may be difficult to achieve using the side air supply for large halls, to control the indoor air pollutants or reduce the infection risk, such as the transmission of COVID-19 within the breathing zone of occupants. An efficient Ventilation Mode with Deflector and Slot air outlets (VMDS) was developed by this study. The use of a deflector with slot air outlets was introduced by utilizing jet collision and adhesion effect to accentuate the ventilation performance of the side air supply for the large space. The numerical simulation model used in this study was validated experimentally. The VMDS was compared with three other side air supply modes used in large spaces, and the results were evaluated comprehensively. The results show that VMDS is effective in reducing indoor air pollutant concentrations and transmission of infectious diseases in large spaces while satisfying the energy efficiency and thermal comfort requirements. Compared with the common side-supply and side-return ventilation modes, VMDS can reduce indoor air pollutant concentration by nearly 40%, reduce the transmission risk of infectious disease to less than 1% at a low air change rate and increase the ventilation efficiency from about 0.85 to about 1.2. In addition, VMDS can theoretically reduce ventilation energy consumption by about 85%. © The Author(s) 2022.

3.
Chinese Science Bulletin-Chinese ; 67(16):1783-1795, 2022.
Article in Chinese | Web of Science | ID: covidwho-1928264

ABSTRACT

In response to the construction process of Healthy China. it is rather important to create a safe, healthy and energy-efficient indoor environment for public buildings. The public building space is often densely populated, with a large flow of people and many types of air pollution, which presents non-uniform dynamic distribution characteristics. This brings great challenges to the control of indoor air safety, especially during the pandemic period of COVID-19. Excessive ventilation may not only cause large energy waste. but also lead to cross-contamination and even a cluster of infection. In this paper, an operation and maintenance (O&M) control system for indoor air safety is developed based on the core concepts and basic methods of human ergonomics. In this system, one of the important human environmental variables is focused for control, i.e.. indoor air pollution level. Especially after the outbreak of COVID-19. droplets and droplet nuclei from respiration are the most significant air pollution categories required for mitigation. Towards the efficient control of air pollution in large public buildings. it should further take into account the interaction of human, equipment and machines (i.e., ventilation_ air purification and disinfection and intelligent control system) and building environment. Firstly, on the basis of the online monitoring of indoor air pollution concentration and personnel flow, the non-uniform dynamic distribution of indoor pollutants and personnel can be obtained by using the non-uniform and low-dimensional rapid prediction models and computer vision processing. Then, the optimal setting results of ventilation parameters (e.g., ventilation modes, supply air rate. etc.) can be outputted by the environmental control decision system. Finally, based on a combination of monitoring sensors, controllers and actuator hardware equipment (at the location of fans or dampers), the intelligent regulation and control of ventilation system can be realized, aimed at minimizing energy consumption and reducing pollutant concentration and exposure level. Meanwhile, the air purification and disinfection system (especially for the disinfection of virus particles) are operated under the condition of the ventilated environment, which can serve as a powerful auxiliary to the maintenance of indoor air safety. The workflow and effect of the O&M control system are demonstrated by an engineering application case of the front hall in the International Convention and Exhibition Center. The results indicate that the non-uniform and low-dimensional rapid prediction model for pollutant concentration is effective for the ventilation control with the average prediction difference of 11.9%. The implementation of the intelligent ventilation system can reduce the risk of human infection to less than 4%. and its energy-saving ratio for the ventilation can be as high as about 45%. Through optimizing the layout strategies of disinfection devices based on the intelligent ventilation control, the space accessibility of negative oxygen ions can be well accepted, to further increase the removal efficiency of air pollution. The calculated value of space disinfection rate is more than 99%, which can further reduce the risk of infection by 1-2 orders of magnitude. This study can provide an important reference for the promotion and upgrading of O&M control system for indoor air safety.

4.
Build Environ ; 219: 109233, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1866932

ABSTRACT

COVID-19 is a global threat. Non-pharmaceutical interventions were commonly adopted for COVID-19 prevention and control. However, during stable periods of the pandemic, energy would be inevitably wasted if all interventions were implemented. The study aims to reduce the building energy consumption when meet the demands of epidemic prevention and control under the stable period of COVID-19. Based on the improved Wells-Riley model considering dynamic quanta generation and pulmonary ventilation rate, we established the infection risk - equivalent fresh air volume - energy consumption model to analyze the infection risk and building energy consumption during different seasons and optimized the urban building energy consumption according to the spatio-temporal population distribution. Shopping centers and restaurants contributed the most in urban energy consumption, and if they are closed during the pandemic, the total infection risk would be reduced by 25%-40% and 15%-25% respectively and the urban energy consumption would be reduced by 30%-40% and 13%-20% respectively. If people wore masks in all public indoor environments (exclude restaurants and KTV), the infection risk could be reduced by 60%-70% and the energy consumption could be reduced by 20%-60%. Gyms pose the highest risk for COVID-19 transmission. If the energy consumption kept the same with the current value, after the optimization, infection risk in winter, summer and the transition season could be reduced by 65%, 53% and 60%, respectively. After the optimization, under the condition of R t  < 1, the energy consumption in winter, summer, and the transition season could be reduced by 72%, 64%, and 68% respectively.

5.
13th International Conference on Electrical and Electronics Engineering, ELECO 2021 ; : 599-603, 2021.
Article in English | Scopus | ID: covidwho-1727220

ABSTRACT

The building automation control is a crucial factor for improving buildings energy efficiency and management. This paper presents the methodology and describes the necessary technology requirements for developing smart devices and for certifying engineers on building automation remotely. Due to the COVID-19 pandemic, the remote but effective device development and engineer's certification on building automation, without decreasing the efficiency of both procedures, is of great importance. © 2021 Chamber of Turkish Electrical Engineers.

SELECTION OF CITATIONS
SEARCH DETAIL